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Abstract—One of the famous transformations is discrete cosine
transform (DCT), which is always used in digital image coding
standards like JPEG and MPEG. DCT has different types
and all of DCTs have excellent energy compaction properties.
Meanwhile, matrices of DCTs II and IV are examined by a lot of
researchers. However, other types of DCTs are rarely developed.
Therefore, this paper presents 4 × 4 parametric integer DCTs,
which cannot only represent DCTs II and IV but other types of
DCTs (i.e. DCT I, V, VIII). It shows an excellent performance in
terms of mean square errors and transform coding gains while
it is comparing with state of the art.

Index Terms—Image compression, discrete cosine transforms
(DCTs), parametric integer transform

I. INTRODUCTION

Transform coding, converting the data from the spatial to
the frequency domain, has found widespread applications in
digital image processing. One of the pervasive transforms
is the discrete cosine transform (DCT) firstly presented by
Ahmed [1]. As is the discrete version of cosine function,
DCT is an approximation of the Karhunen-Loeve transform
(KLT) [2] and good at energy compaction. It is widely applied
in image processing, such as image compression [3], image
quality optimization [4] and image denoising [5].

Generally, eight types of DCTs all have excellent energy
compaction properties. Applications of these eight DCTs are
various. The types II and IV of DCTs are the most widely
applied in many fields, such as image compression, image
encryption [6], feature extraction [7], and image denoising [8].
However, float numbers of DCT matrices generated from
the traditional ways always cost a lot of time. Therefore,
many kinds of research are developing their factorizations
and integer forms to diminish the computational cost, such
as the lifting scheme-based binDCT [9], the binary DCT [10],
the integer DCT with non-orthogonal structures [11], and the
integer MDCT derived from DCT IV [12]. However, integer
forms of the rest of DCTs are little investigated, even though
they also have a lot of applications. For example, the DCTs
I, V, and VIII can be implemented in the fractional Fourier
transform [13].

On the other hand, 4×4 DCT matrices can be easier imple-
mented and they can avoid some mismatch or ringing effects
than other sizes during the transformation process [14][15].
Furthermore, they also can be expanded to other sizes of DCTs
with factorization or block operations [16].

Therefore, in this paper, we design 4×4 parametric integer
discrete cosine transforms (PIDCTs) to represent integer forms
of DCTs II and IV, and other types of DCTs. In PIDCTs, the

matrices are all composed by integer parameters and they are
orthogonal parametric matrices which can represent different
types of DCTs. To evaluate its coding performance, we make
comparisons it with peer integer DCT and traditional DCTs in
terms of transform coding gain and DCT distortion. The rest of
this paper is organized as follows: Section II reviews all types
of traditional DCTs, and proposes 4×4 integer DCT matrices
with various parameters will be presented in Section III.
Analysis results are shown in Section IV. Section V reaches
conclusion and future work.

II. TRADITIONAL DCTS

We first review some N-order traditional Discrete Cosine
Transforms (DCTs). The matrix of DCT III is the transpose
of DCT II. The matrices of DCTs VI and VII can be deduced
by DCT V. Therefore, here we lists the typical matrices of
DCT types: DCTs I, II, IV, V, and VIII.
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Then the above γIi,j , γ
II
i,j , and γVi,j are normalization con-

stants, which can be defined as

γIi,j =

{ √
2

N−1 , if i, j = 0, N − 1
2√
N−1 , otherwise
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
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1
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2
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{ √
2
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2√
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(2)

where 0 ≤ i, j ≤ N − 1.
The inverse matrices of these types of DCTs are the trans-

poses of their matrices since they are all orthogonal matrices.
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III. PROPOSED 4× 4 PARAMETRIC INTEGER DISCRETE
COSINE TRANSFORMS

In this section, we present 4× 4 parametric integer discrete
cosine transforms (PIDCTs) to denote different types of DCTs
matrices. It is shown that PIDCTs can represent the matrix
of DCT II and those of other types of DCTs with integer
parameters under some constraints. As is shown in Section II,
PIDCTs denote the main types of DCTs in this section: DCTs
I, II, IV, V, and VIII.

For a 4 × 4 type y of DCT specified as P y in PIDCTs
is defined as follows. When y ∈ [1, 2, 4, 5, 8], P y can be
represented as

P 1(a1, b1) =


a1 b1 b1 a1
b1 a1 −a1 −b1
b1 −a1 −a1 b1
a1 −b1 b1 a1



P 2(a2, b2, c2) =


a2 a2 a2 a2
b2 c2 −c2 −b2
a2 −a2 −a2 a2
c2 −b2 b2 −c2

 ,
where 2a22 = b22 + c22;

P 4(a4, b4, c4, d4) =


a4 b4 c4 d4
b4 −d4 −a4 −c4
c4 −a4 d4 b4
d4 −c4 b4 −a4

 ,
where a4b4 − b4d4 − a4c4 − c4d4 = 0;

P 5(a5, b5, c5, d5) =


d25 d5 d5 d5
d5 a5 −b5 −c5
d5 −b5 −c5 a5
d5 −c5 a5 −b5

 ,
where d25+a5− b5− c5 = 0 and d25−a5b5−a5c5+ b5c5 = 0;

P 8(a8, b8, c8, d8, e8) =


a8 b8 c8 d8
b8 −e8 −b8 −b8
c8 −b8 −d8 a8
d8 −b8 a8 −c8

 ,
where a8+e8−c8−d8 = 0 and a8c8− b28−c8d8+a8d8 = 0.

The PIDCT P 3 is the transpose of P 2 and it can denote the
integer form of DCT III.

To be approximated to traditional DCTs, we need to ob-
tain orthogonal forms of PIDCTs. P y needs a normalization
process with a quantization parameter 1/qy as follows.

Ny =
P y

qy
(3)

where qy can be denoted as q1 =
√
2(a21 + b21), q2 =

√
4a22 =

2a2, q4 =
√
a24 + b24 + c24 + d24, q5 =

√
d45 + 3d25, and q8 =√

3b28 + e28, respectively. As is a unit orthogonal matrix Ny ,
the inverse of this matrix is its transposition.

All the parameters in PIDCTs are positive integers. Here we
take some examples of PIDCTs. When y = 1, a1 = 2, b1 =
3, q1 =

√
26, P 1 can be written as

P 1(2, 3) =


2 3 3 2
3 2 −2 −3
3 −2 −2 3
2 −3 3 −2

 .
where P 1(2, 3) is an example of integer DCT I matrices.

When y = 2, a2 = 13, b2 = 17, c2 = 7, q =
√
676, the

integer matrix of DCT II can be shown by PIDCTs as follows

P 2(17, 23, 7) =


13 13 13 13
17 7 −7 −17
13 −13 −13 13
7 −17 17 −7

 .
One example of DCT IV can be represented with q4 =

√
39

as

P 4(5, 3, 2, 1) =


5 3 2 1
3 −1 −5 −2
2 −5 1 3
1 −2 3 −5

 .
Cases of DCT V and DCT VIII can be represented as

following functions with q5 =
√
2548 and q8 =

√
36,

respectively.

P 5(17, 29, 37, 7) =


49 7 7 7
7 17 −29 −37
7 −29 −37 17
7 −37 17 −29

 ;

P 8(5, 3, 1, 1, 3) =


5 3 1 1
3 −3 −3 −3
1 −3 −1 5
1 −3 5 −1

 .
The quantization factor qy can be moved to the quantization

or initial process of image compression. Therefore, PIDCTs
can avoid floating number operations since its matrices are
composed of integers.

IV. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of PIDCTs
and compare it with other Integer cosine transform, e.g.
LLM [17]. They will be compared in terms of DCT distortion
and transform coding gain.

A. DCT Distortion

Most of integer DCTs are designed for imitating the tra-
ditional DCTs. The basis vectors of these integer DCTs
are supposed to be approximate to that of traditional DCTs
since they can obtain better transform coding performance.
Mean square errors (MSEs) are usually used to estimate the
distortion between integer and original DCTs. The smaller
MSEs of integer transforms are closer to the original DCTs.
Then we compare PIDCTs with LLM [17] to evaluate their
MSEs with size of 4 × 4 matrices. Here some examples are
listed as is shown in Table I.
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TABLE I
MEAN SQUARE ERRORS OF PIDCTS AND LLM WITH THE SIZE OF 4× 4.

Transform Types Mean square errors
Traditional DCTs 0
LLM [17] 7.979 ∗ 10−2

P 1(338, 239) 1.703 ∗ 10-11

P 2(13, 17, 7) 2.188 ∗ 10−6

P 4(145, 123, 82, 29) 1.116 ∗ 10−6

P 8(43, 38, 28, 16, 1) 2.4328 ∗ 10−4

Table I presents the examples of PIDCTs are smaller
than that of LLM, which means that PIDCTs are closer to
traditional DCTs.

B. Coding Efficiency

An useful method to measure the performance of transform
coding is to assess its transform coding gain G as following
function.

G = 10log10
1

N

N−1∑
i=0

α2
i /(

N−1∏
i=0

α2
i ‖bi‖

2
)

1
N , (4)

where N is the order of the transform, α2
i is the variance of

the ith transform coefficient, and ‖bi‖2 is the 2-norm of ith

basis function of the transform matrix. The higher values of
transform coding gain mean the more data the transform can
compress. Table II displays the transform coding gains among
traditional DCTs, the examples of LLM [17] and PIDCTs.

TABLE II
TRANSFORM CODING GAINS OF DIFFERENT INTEGER COSINE

TRANSFORMS WITH THE SIZE OF 4× 4.

Transform Types Transform coding gain G(dB)
ρ = 0.7 ρ = 0.75 ρ = 0.8 ρ = 0.85 ρ = 0.9

DCT I 2.0633 2.5035 3.0475 3.7475 4.7195
P 1(338, 239) 2.0633 2.5035 3.0475 3.7475 4.7195
DCT II 2.1520 2.6524 3.2916 4.1453 5.3870
LLM [17] 2.1520 2.6517 3.2880 4.1382 5.3758
P 2(265, 343, 151) 2.1533 2.6548 3.2935 4.1465 5.3873
DCT IV 1.4122 1.6702 1.9658 2.3073 2.7064
P 4(121, 120, 56, 44) 1.4514 1.7562 2.1285 2.5991 3.2309
DCT V 2.0679 2.5284 3.1030 3.8477 4.8772
P 5(1, 1, 1, 1) 1.9486 2.4163 3.0187 3.8335 5.0342
DCT VIII 1.9015 2.2970 2.7757 3.3706 4.1423
P 8(92, 80, 49, 44, 1) 1.9291 2.3570 2.8907 3.5828 4.5429

As can be seen in Table II, the bold numbers represent
biggest coding gain values of different DCTs, which are the
results of our P 2(265, 343, 151). Besides, it also shows a bet-
ter transform coding gain than LLM since the matrix of LLM
is DCT II. At the same time, other coding gains of PIDCTs are
closer or even superior than corresponding traditional DCTs
when α is belong to the set {0.7, 0.75, 0.8, 0.85, 0.9}.

C. Compression Performance

The compression process usually removes some redundancy
information from images but it also disturbs some useful image
data. To evaluate the performance of compression, the peak
signal-to-noise ratio (PSNR) is an excellent tool to detect
the difference between original and compressed images. Here

(a)

(c)

(b)

(d)

Fig. 1. (a) A color pepper image with 512× 512 compressed by (b) JPEG
(PSNR: 31.7629), (c) LLM (PSNR is 31.6998) and (d) PIDCT P 2(39, 51, 21)
(PSNR is 31.7630).

we use a 512×512 color pepper image and compress it by
traditional JPEG, LLM, and PIDCT.

In Fig. 1 we can see that PIDCT has a better PSNR than
traditional JPEG and LLM with the same quantization level.
As one of the examples, it demonstrates that our PIDCT has
a similar or better performance than traditional DCTs or other
integer cosine transform.

V. CONCLUSION AND FUTURE WORK

As 4-order DCTs can avoid some ringing artifacts than other
sizes, in this paper, we proposed a 4 × 4 parametric integer
DCTs-like algorithm, i.e. PIDCTs. It cannot only imitate DCTs
II and IV but also other types of DCTs since most research
focused on integer forms of DCTs II and IV. Mainly PIDCTs
can represent the matrices of 4-order integer DCTs I-IV, V, and
VIII to avoid floating operations and reduce the computation
cost. All the choices of coefficients of PIDCTs are flexible
and parametric with some constraints. Transform evaluation
results also demonstrate that PIDCTs are closer to traditional
DCTs than peer integer DCT. It also shows a high transform
efficiency in transform coding gain.

In future, we can expand PIDCTs to represent all types of
DCTs to further develop its parametric property. Then we can
explore more potentials of PIDCTs in different applications
since different types of traditional DCTs have lots of valuable
usages.
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